Necessary and Sufficient Conditions for Optimality of Nonconvex, Noncoercive Autonomous Variational Problems with Constraints
نویسنده
چکیده
We consider the classical autonomous constrained variational problem of minimization of ∫ b a f(v(t), v ′(t))dt in the class Ω:={v ∈ W 1,1(a, b) : v(a) = α, v(b) = β, v′(t) ≥ 0 a.e. in (a, b)}, where f : [α, β] × [0,+∞) → R is a lower semicontinuous, nonnegative integrand, which can be nonsmooth, nonconvex and noncoercive. We prove a necessary and sufficient condition for the optimality of a trajectory v0 ∈ Ω in the form of a DuBois-Reymond inclusion involving the subdifferential of Convex Analysis. Moreover, we also provide a relaxation result and necessary and sufficient conditions for the existence of the minimum expressed in terms of an upper limitation for the assigned mean slope ξ0 = (β−α)/(b−a). Applications to various noncoercive variational problems are also included.
منابع مشابه
Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures
We consider nonconvex vector optimization problems with variable ordering structures in Banach spaces. Under certain boundedness and continuity properties we present necessary conditions for approximate solutions of these problems. Using a generic approach to subdifferentials we derive necessary conditions for approximate minimizers and approximately minimal solutions of vector optimizatio...
متن کاملSequential Optimality Conditions and Variational Inequalities
In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...
متن کاملOn the Convexity of the Value Function for a Class of Nonconvex Variational Problems: Existence and Optimality Conditions
In this paper we study a class of perturbed constrained nonconvex variational problems depending on either time/state or time/state’s derivative variables. Its (optimal) value function is proved to be convex and then several related properties are obtained. Existence, strong duality results, and necessary/sufficient optimality conditions are established. Moreover, via a necessary optimality con...
متن کاملSufficient global optimality conditions for general mixed integer nonlinear programming problems
In this paper, some KKT type sufficient global optimality conditions for general mixed integer nonlinear programming problems with equality and inequality constraints (MINPP) are established. We achieve this by employing a Lagrange function for MINPP. In addition, verifiable sufficient global optimality conditions for general mixed integer quadratic programming problems are der...
متن کاملVariational Analysis of Evolution Inclusions
The paper is devoted to optimization problems of the Bolza and Mayer types for evolution systems governed by nonconvex Lipschitzian differential inclusions in Banach spaces under endpoint constraints described by finitely many equalities and inequalities. with generally nonsmooth functions. We develop a variational analysis of such problems mainly based on their discrete approximations and the ...
متن کامل